a2 United States Patent

Guarnieri et al.

US009223984B2

US 9,223,984 B2
*Dec. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

AFTER-THE-FACT CONFIGURATION OF
STATIC ANALYSIS TOOLS ABLE TO
REDUCE USER BURDEN

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Salvatore A. Guarnieri, New York, NY
(US); Marco Pistoia, Amawalk, NY
(US); Omer Tripp, Har-Adar (IL)

Assignee: GlobalFoundries Inc., Grand Cayman
KY)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 7 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/024,761

Filed: Sep. 12, 2013
Prior Publication Data
US 2014/0373159 Al Dec. 18, 2014

Related U.S. Application Data

Continuation of application No. 13/917,916, filed on
Jun. 14, 2013.

Int. CI.

GOGF 11/00 (2006.01)

GOGF 21/57 (2013.01)

U.S. CL

CPC e, GO6F 21/577 (2013.01)
Field of Classification Search

CPC ... GOG6F 21/50;, GOGF 21/562; HO4L 63/14
USPC ..o 726/23-25;713/185-187; 717/131

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,284,274 B1 10/2007 Walls et al.

7,849,509 B2 12/2010 Venkatapathy

7,975,306 B2 7/2011 Chess et al.

8,171,554 B2* 5/2012 Elovicietal. HO4L 12/2602
713/151

8,528,093 B1* 9/2013 Kurchaetal.c............ 726/25

(Continued)
OTHER PUBLICATIONS

A Moser, Limits of Static Analysis for Malware Detection, Dec.
2007, IEEE, vol. 10, pp. 421-430.*

(Continued)

Primary Examiner — Dede Zecher
Assistant Examiner — Viral Lakhia
(74) Attorney, Agent, or Firm — Harrington & Smith

(57) ABSTRACT

A method includes mapping, based on a first mapping from
possible security findings to possible configuration-related
sources of imprecision, actual security findings from a static
analysis of a program to corresponding configuration-related
sources of imprecision, the mapping of the actual security
findings creating a second mapping. A user is requested to
configure selected ones of the configuration-related sources
of imprecision from the second mapping. Responsive to a
user updating configuration corresponding to the selected
ones of the configuration-related sources of imprecision,
security analysis results are updated for the static analysis of
the program at least by determining whether one or more
security findings from the security analysis results are no
longer considered to be vulnerable based on the updated
configuration by the user. The updated security analysis
results are output. Apparatus and program products are also
disclosed.

17 Claims, 4 Drawing Sheets

Computing System 100
Memary(ies) 145
| Framework 155 |
1851 185-x
] ! Mapping, M~ ra/ Fg/
|} Program. P07 1} 117 . Mapping Rules: R, Ry,...,
| I — |
initial Security
Analysis R .
Resuilts, F' 1 1811 i8t-m
Security Analysis Tool 140 167 I~ Security Findings: i, f.....7n
Static Analysis Tool, T Final Security
150 Analysis 181
Results, F 1 Bt ek
ConfigurationTool 170 158 ~— Security Findings: f;, ... §
Processor(s} 110 l |7NW {fF(s) 130 }
Display(s) 178
ot le
Circuitry 118 VOUF(s) 120 e Ul180

External Device(s)
190

US 9,223,984 B2
Page 2

(56)

8,661,547

8,789,200

8,819,820
2004/0243881
2006/0225124
2007/0240138
2008/0060077
2008/0092237
2008/0250493
2008/0276228
2009/0300764
2011/0126288

2011/0173693
2012/0144491
2012/0159624

References Cited

U.S. PATENT DOCUMENTS

Bl
B2 *
B2 *
Al
Al
Al
Al
Al*
Al
Al
Al
Al*

Al
Al
Al*

2/2014
7/2014
8/2014
12/2004
10/2006
10/2007
3/2008
4/2008
10/2008
11/2008
12/2009
5/2011

7/2011
6/2012
6/2012

Kononov et al.

Anetal. ...coooeiniiinnnns 726/26

Milman et al. .. 726/22

Wang et al.

Kolawa

Chess

Cowan

Yoonetalccooceevennnnnn. 726/25

Bassani et al.

Sreedhar

Freeman

Schloegel et al. GOG6F 21/577
726/25

Wysopal et al.
Pistoia
Konig ..oocovvvviiicieiin 726/23

2012/0317143 Al 12/2012 Pistoia
2013/0086689 Al 4/2013 Laverdiere-Papineau

2013/0133069 Al* 5/2013 Nazarov GO6F 21/56
726/23
2013/0226539 Al* 82013 Shawccovviiviininn. 703/2
2013/0312092 Al* 112013 Parker HO4L 63/1408
726/22

OTHER PUBLICATIONS

Ayewah, N. et al.; “Evaluating Static Analysis Defect Warnings on
Production Software”; Jun. 13, 2007, whole document (7 pp.); Asso-
ciation for Computing Machinery; San Diego, California, USA.
Zitser, M. et al.; “Testing Static Analysis Tools using Exploitable
Buffer Overflows from Open Source Code”; Oct. 31, 2004; whole
document (10 pp.); Association for Computing Machinery; Newport
Beach, California, USA.

* cited by examiner

US 9,223,984 B2

Sheet 1 of 4

Dec. 29, 2015

U.S. Patent

{siaciaay] (BUIRINT

4

L

o

71 (siAeidsiy

\@ g sBUpULY AINOBEG we)
4131 w.xx\\

\ﬁ& o sBUIpULY AN0OS e
urigl Zm;\

_va sainy Buddeyy
L-goL

X531

¥

GZL (s)4i1 O

OET {831 AN

AT {s)i0ss000i4

P

851

e = BHTISTY
sigheuy

Anoss Buld

0T oo puogemnByuns

1 ‘00 sisfieuy oNBIS

e

50

07l 100} mmm%mma{ xm.wﬁjumwmw

e] SYNSEH
sisArauy
Aunoesg e

/i

1
..., [‘Butddely

767 |

707 o weriboid

;
|
j |
G5 pomsuielg i

Rnnxmm werrrs e aneess | anannn WA SR

GFT (ssfunwispy

80T waisis Bugnduio]

U.S. Patent Dec. 29, 2015

US 9,223,984 B2

Sheet 2 of 4
Static
Analysis
FIG. 2 s

~

/95

Ferform a static analysis (e.g.,
using static analysis tooi Tyon |

program P

é pa

Security Rules,
L8R,

For gach security finding tin

configuration-related sources of
imprecision Uf any) using M P

map tio s potential

* Mapping, M

117

/220 ‘

inltial securily
analysis results,

Mapping of actualy
sacurily findings
to potential
configuration-
refated sources of |
_ imprecision

260

sources of imprecision for a user {

Sslect configuration-related

221
e

te configure

N

Rerun static analysis on

/25

<
3

Gubsstof
mapping 217

perlion of program (e.g.,
on flows affected by
updated analysis)

3?

Request the user configurs the
elected configuration-related
spurces of imprecision

Updated

i 430

configurations

=

De’sermme whether
seourity finding(s) from
the zecurity analysis
results are no longer

considered {0 be
vitinerabie based on the
updated configuration

i
i i no longer
! vulnerable, rermovs
{ the security

B finding{s) from the

User updates configurations fo
the selected configuration-related
sources of imprecision

Update security analysis resulis
based on configured
configuration-related sourcas of |

imprecision
% /4(}

Cutput final security analysis
resuits

£
v

security analysis

results

/

255

158

Final security
analysis results, F
4

D45

Pz

Display indications
of final security
analysis resulis to
user

U.S. Patent Dec. 29, 2015 Sheet 3 of 4 US 9,223,984 B2

185-10 If g vulnerable flow is discoverad along a path having a cali to a method
with & sanitizer-iike signature, then a possible canfiguration-related source of
imprecision is the method,

185-2: Havulnerability of type Mog forging” is discovéered and the source
statement is g "getParamater” call, then a possible configuration-related source of
imprecision is the targat web container(s).

185-3; I a vulnavable flow is discovered within framework code, then a possible
configuration-related source of imprecision is the framework configuration.

FIG. 3

178
},4'%0 ij

(/'

/

S

7 ; Configure | P | 0H] X

A yulnerable flow has been discovered along a patht having a call tu MethodX with {1
a sanitizer-like signature; please consider configuring the specification of the
mathod {2.9., if the method is & sanitizer).

Avulnarability of type "log forging” has been discoverad and the spurce statement »
is a "getParameter” call; please consider configuring whether target web d

container(s) can be constrained to certain web confainer(s).

Aviinerable flow has bean discoverad within framework code; please consider =
configuring information related to the ramework configuration,

.

585-1; User configures specification of the method with the sanitizer-like signalure
o indicate the method is 3 sanitizer.

585-2: User constrains the web confginer(s) {0 specific containar(s),

585-3. User configures specification of ramewaork validators installed by userto
update framework configuration.

FIG. 5

U.S. Patent Dec. 29, 2015 Sheet 4 of 4 US 9,223,984 B2

610

/

Converge on a subset (less than all) of the configuration-related
sources of imprecision that optimizes the following two constraints:
1) Minimum number of configuration-related sources of imprecision;

and
2} Maximal precision

FIG. 6

716

Z

Request user spacify {e.g., the z {op) configuration-related sources of
imprecision

FIG. 7

810

Request user speoidy a number of configuration-related sources of
imprecision that cover at least a cerlain parcentage {e.g., x%) of the
total number of configuration-related sources of imprecision

FIG. 8

US 9,223,984 B2

1
AFTER-THE-FACT CONFIGURATION OF
STATIC ANALYSIS TOOLS ABLE TO
REDUCE USER BURDEN

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application is a continuation of U.S. patent
application Ser. No. 13/917,916, filed on Jun. 14, 2013, which
is incorporated herein by reference in its entirety to provide
continuity of disclosure.

BACKGROUND

This invention relates generally to analysis of program
code and, more specifically, relates to static analysis of pro-
gram code.

This section is intended to provide a background or context
to the invention disclosed below. The description herein may
include concepts that could be pursued, but are not necessar-
ily ones that have been previously conceived, implemented or
described. Therefore, unless otherwise explicitly indicated
herein, what is described in this section is not prior art to the
description in this application and is not admitted to be prior
art by inclusion in this section.

Static analysis is an analysis that involves examining the
code of programs such as Web programs without executing
the code of the program. Some type of model is (or, more
typically, models are) created of the code of the program, to
estimate what would happen when the code actually is
executed.

Static security analysis generally takes the form of taint
analysis, where the analysis may be parameterized by a set of
security rules, each rule being a triple <Src,San,Snk> denot-
ing the following:

1) source statements (Src) reading untrusted user inputs;

2) downgrader statements (San) endorsing untrusted data
by either endorsing or sanitizing the untrusted data; and

3) sink statements (Snk) performing security-sensitive
operations.

There are a number of techniques for analyzing taint flow
from sources to sinks. These techniques also consider
whether flow passed through a downgrader (also called an
endorser or sanitizer for endorsement or sanitization, respec-
tively) that performs downgrading of the taint. Using such
techniques, given security rule r, a flow from a source in Src,
to a sink in Snk, that does not pass through a downgrader from
San, comprises a potential vulnerability.

Static analysis is a necessity when auditing industry-scale
software systems. Such systems are too large and complex to
lend themselves to thorough manual review. A key difficulty,
however, is that the analysis typically reports an overwhelm-
ing number of findings. For example, for a medium-size
application, a commercial static security analysis typically
reports thousands of issues, if not more.

Thus, it would be beneficial to reduce the number of
reported issues.

BRIEF SUMMARY

The following summary is merely intended to be exem-
plary. The summary is not intended to limit the scope of the
claims.

A method includes mapping, based on a first mapping from
possible security findings to possible configuration-related
sources of imprecision, actual security findings from a static
analysis of a program to corresponding configuration-related

10

15

20

25

30

35

40

45

50

55

60

65

2

sources of imprecision, the mapping of the actual security
findings creating a second mapping. A user is requested to
configure selected ones of the configuration-related sources
of imprecision from the second mapping. Responsive to a
user updating configuration corresponding to the selected
ones of the configuration-related sources of imprecision,
security analysis results are updated for the static analysis of
the program at least by determining whether one or more
security findings from the security analysis results are no
longer considered to be vulnerable based on the updated
configuration by the user. The updated security analysis
results are output. Apparatus and program products are also
disclosed.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of an example of a system
suitable for performing the exemplary embodiments herein;

FIG. 2 is a logic flow diagram for after-the-fact configura-
tion of static analysis tools able to reduce user burden, and
illustrates the operation of an exemplary method, a result of
execution of computer program instructions embodied on a
computer readable memory, and/or functions performed by
logic implemented in hardware, in accordance with an exem-
plary embodiment;

FIG. 3 illustrates three exemplary mapping rules in accor-
dance with exemplary embodiments;

FIG. 4 illustrates a Ul and indications on the Ul for request-
ing a user to configure selected configuration-related sources
of imprecision, where the indications correspond to the map-
ping rules in FIG. 3;

FIG. 5 illustrates exemplary actions taken by a user to
configure selected configuration-related sources of impreci-
sion, where the actions correspond to the indications shown in
FIG. 4; and

FIGS. 6, 7, and 8 are each examples of operations to select
configuration-related sources of imprecision for a user to
configure.

DETAILED DESCRIPTION

As stated above, there are problems with static analyses.
Additional description of problems is now presented.

An effective way of improving the precision of the analysis
is by configuring the analysis to account for application-
specific and/or deployment-specific behaviors. Here are some
examples from the area of security analysis of web applica-
tions:

Downgrader methods. Some methods in the application
scope act as downgraders—i.e., sanitizers or valida-
tors—thereby endorsing untrusted information flows. If
the user neglects to specify a downgrader in a tool’s
configuration, then the tool is likely to report false find-
ings. False findings are reported issues where the flow
goes through the downgrader, which should mean the
flow should not be reported as the flow should be down-
graded and no vulnerability should result. In the case of
a downgrader not specified as such, though, flows pass-
ing through the downgrader would still be marked as
vulnerable.

Database (DB) type. In certain reports, the flow either starts
or terminates at a backend DB. The security analysis
makes the conservative assumption that the backend DB
can be of any type. However, knowing the exact type of
the DB renders some of the reported issues benign. This
is because different DBs treat different characters and

US 9,223,984 B2

3

substrings in the user query as metacharacters, and thus
attacks and corresponding vulnerabilities are based on
those different metacharacters.

Web container. Different web containers (e.g., Tomcat,
JBoss and Websphere in Java web programming, where
Java is a program language and computing platform)
filter out or transform different patterns in the incoming
request before the request reaches user code. For
example, in Tomcat the value of an HTTP (hypertext
transfer protocol) parameter cannot contain the “\n\r”
substring, which forces line feed, and thus certain kinds
of log-forging vulnerability reports are likely to be
benign in Tomcat.

Framework configuration. A final example is the configu-
ration provided for software frameworks the application
is built atop (e.g., Struts, Spring and JSF, Java server
faces). In certain frameworks (e.g. Struts), it is possible
to define interceptors that modify/validate input values,
thereby rendering false some of the reports by the analy-
sis tool.

In all of the above cases (and many others), the user-
provided configuration directly contributes to the precision of
the analysis, reducing the number/likelihood of false reports.

An exemplary problem, however, is that extensive configu-
ration of the static analysis tool reduces its usability, as well as
the productivity of the user. If the user is required to eagerly
specify all the various deployment settings and application-
level information that may influence the precision of the
analysis, then there is, e.g., (I) a steep learning curve in using
the analysis tool, and (ii) a considerable time investment
before every scan. Moreover, the user is likely to forget cer-
tain configuration items and/or err, if (s)he is expected to
configure a large number of settings.

An exemplary improvement described herein is that the
tool configuration can happen after the scan, at the point when
the tool is already aware of “serious” sources of potential
imprecision. This leaves the user to configure only the rel-
evant settings, thereby reducing the amount of required con-
figuration and improving the usability of the tool. For this, the
security analysis tool should be able to relate security findings
to configuration-related sources of imprecision. For instance,
the correctness of'a report on a vulnerable flow into a backend
database hinges on the type of backend database, and thus the
type of backend database in this example is a configuration-
related source of imprecision, since the type determines
whether the flow actually is or is not vulnerable to a security
issue and a user can configure the tool to allow the tool to
determine the type of the backend database.

That is, assuming that the static analysis tool is equipped
with a mapping from security findings to their potential con-
figuration-related sources of imprecision, these sources can
be mitigated via configuration. Here are several examples:

A) If the static analysis tool determines, along a vulnerable
path, methods with a sanitizer-like signature (e.g., accepting
a string and returning it string), then these methods may
indeed be sanitizers, which the user could configure as such.
Because the user configures the static analysis tool to apply
these methods as sanitizers, then flows previously marked
(e.g., in an initial security analysis results) as vulnerable can
be determined by the static analysis tool to no longer be
vulnerable and removed from the initial security analysis
results to create a final security analysis results.

B) If the tool reports a vulnerability that is container spe-
cific, such as a log-forging violation starting at a getParameter
call, then the correctness of this report depends on the type of
web container (as explained above). The user can configure
the static analysis tool, e.g., to constrain the applicable web

20

30

40

45

55

4

container(s) to particular web container(s), and then flows
previously marked (e.g., in the initial security analysis
results) as vulnerable can be determined by the static analysis
tool to no longer be vulnerable and removed from the initial
security analysis results to create the final security analysis
results.

C) If the static analysis tool as a result of an analysis on a
program reports a vulnerable flow within framework code,
then being aware of the framework configuration—and in
particular, the framework-level validators installed by the
user—could allow the analysis to suppress the finding. An
example of this is an SQL (structured query language) injec-
tion (SQLi) report, where a framework-level validator
ensures that the user input contains only digits (and thus input
to a backend database of the user input will not be subject to
an SQLi). The user can configure the static analysis tool to
determine which methods are framework-level validators and
therefore the static analysis tool can use this configuration to
remove security findings related to flows that were initially
marked as vulnerable but that pass through a framework-level
validator.

Additional description of the exemplary embodiments is
presented reference to the figures. Referring to FIG. 1, this
figure provides an overview of a computing system 100 suit-
able for use with exemplary embodiments herein. The com-
puting system 100 comprises one or more memories 145, one
or more processors 110, one or more [/O interfaces 120, and
one or more wired or wireless network interfaces 130. Alter-
natively or in addition to the one or more processors 110, the
computing system 100 may comprise circuitry 115. The com-
puting system 100 is coupled to or includes one or more
displays 176 and one or more external device(s) 190. In one
example, a program, P, 107 a mapping, M, 117, an initial
security analysis results, F', 157, a final security analysis
results, F, 158, and a security analysis tool 140 exist in the one
or more memories 145. The one or more memories 145 also
include a framework 155, of which the program 107 is built
atop. The security analysis tool 140 includes a static analysis
tool, T, 150 and a configuration tool 170. The security analy-
sis tool 140, in an exemplary embodiment, is implemented
computer-readable program code that is executable by the
one or more processors 110 to cause the computing system
100 to perform one or more of the operations described
herein. In another example, the operations may also be per-
formed, in part or completely, by circuitry 115 that imple-
ments logic to carry out the operations. The circuitry 115 may
be implemented as part of the one or more processors 110 or
may be separate from the one or more processors 110. The
processors 110 may be any processing units, such as digital
signal processors and/or single-core or multi-core general
purpose processors. The circuitry 115 may be any electronic
circuit such as an application specific integrated circuit or
programmable logic. The memories 145 may comprise non-
volatile and/or volatile RAM (random access memory), cache
memory, NAND-based flash memory, long term storage (e.g.,
hard drive), and/or read only memory. The one or more I/O
interfaces 120 may include interfaces through which a user
may interact with the computing system 100. The display(s)
176 may be a touchscreen, flatscreen, monitor, television,
projector, as examples.

A user interacts with the security analysis tool 140 through
the U1 180 on the display 176 in an exemplary embodiment or
through the network interface(s) 130 in another non-limiting
embodiment. The external device(s) 190 enable a user to
interact in one exemplary embodiment with the computing
system 100 and may include a mouse, trackball, keyboard,
and the like. The network interfaces 130 may be wired and/or

US 9,223,984 B2

5

wireless and may implement a number of protocols, such as
cellular or local area network protocols. The elements in
computing system 100 may be interconnected through any
technology, such as buses, traces on a board, interconnects on
semiconductors, and the like.

In this example, the security analysis tool 140 includes a
static analysis tool 150 that performs the static analyses
operations (e.g., static analysis 201 described below in refer-
ence to FIG. 2). As an example, the security analysis tool 140
includes a configuration tool 170 that performs, at least in
part, after-the-fact configuration of static analysis tools able
to reduce user burden, as described below. It is noted that the
separation into static analysis tool 150 and configuration tool
170 is merely exemplary and for ease of description. Instead
of this scenario, there could be simply a static analysis tool
150. Furthermore, there does not have to be a security analy-
sis tool 140 (e.g., which could perform other analyses, such as
run-time analyses) and a static analysis tool 150; instead,
there could be only a static analysis tool 150. Other configu-
rations are also possible.

The mapping, M, 117 includes a number x of mapping
rules R, 185-1 through R, 185-x. The mapping rules 185 map
possible security findings (e.g., in terms of possible security
vulnerabilities) to possible configuration-related sources of
imprecision. The initial security analysis results, F', 157
includes in security findings f; 181-1 through f,, 181-m, and
the final security analysis results, F, 158 includes k security
findings f; 181-1 through £, 181-£, where k should be less than
m and the reduction in security findings occurs because the
configuration tool 170 is able to apply configuration by a user
to the static analysis tool 150 in order to remove some of the
security findings from the initial security analysis results 157
to create the final security analysis results 158. A typical
scenario is that there is only a single security analysis results,
and security findings are simply removed from those security
analysis results. However, for ease of reference and under-
standing, two security analysis results 157, 158 are shown in
FIG. 1 (and FIG. 2) and described below.

Turning to FIG. 2, this figure is a logic flow diagram for
after-the-fact configuration of static analysis tools able to
reduce user burden. This figure additionally illustrates the
operation of an exemplary method, a result of execution of
computer program instructions embodied on a computer
readable memory, and/or functions performed by logic
implemented in hardware, in accordance with an exemplary
embodiment. The blocks in FIG. 2 are assumed to be per-
formed by the computing system 100, under control of the
security analysis tool 140. The blocks in FIG. 2 are assumed
to be part of a static analysis 201, such that the program 107
is analyzed statically (that is, without execution of the pro-
gram 107).

In block 205, the computing system 100 performs a static
analysis (e.g., using static analysis tool T 150) on program P
107. The inputs include the program P 107, the static analysis
tool T 150, and y security rules 290. In an exemplary embodi-
ment, each security rule 290 is a triple <Src,San,Snk>, as
previously described. The static analysis tool 150 produces
initial security analysis results 157.

It is assumed, in an exemplary embodiment, that the con-
figuration tool 170 causes the computing system 100 to per-
form at least blocks 215, 220, and 225. In block 215, the
computing system 100 performs the operation of, for each
security finding t 181 in F' 157, mapping t 181 to its potential
configuration-related sources of imprecision (if any) using
the mapping M 117. The input to block 215 is the mapping M
117. Examples of rules 185 in mapping 117 are shown in FIG.
3.

20

25

30

40

45

6

Turning to FIG. 3, this figure illustrates three exemplary
mapping rules in accordance with an exemplary embodiment.
The mapping rules 185 map possible security findings (e.g.,
in terms of possible security vulnerabilities) to possible con-
figuration-related sources of imprecision. It is noted that the
mapping rules 185 are exemplary and are presented in a
format useful for ease of exposition. However, the mapping
rules 185 are not limited to this exemplary format. Mapping
rule 185-1 corresponds to example (A) presented above and
has the following exemplary text: “If a vulnerable flow is
discovered along a path having a call to a method with a
sanitizer-like signature, then a possible configuration-related
source of imprecision is the method.” As described above, a
sanitizer-like signature is accepting a string and returning a
string. The possible security finding is a vulnerable flow along
apath having a call to a method with a sanitizer-like signature.
The possible security vulnerability is that user input (from a
source) has not been properly downgraded by a downgrader
before being used by a sink. Mapping rule 185-2 corresponds
to example (B) presented above and has the following exem-
plary text: “If a vulnerability of type ‘log forging’ is discov-
ered, and the source statement is a ‘getParameter’ call, then a
possible configuration-related source of imprecision is the
target web container(s).” The possible security finding is a
vulnerability of type “log forging” where the source state-
ment is a “getParameter” call. The possible security vulner-
ability is log forging. Mapping rule 185-3 corresponds to
example (C) presented above and has the following exem-
plary text: “If a vulnerable flow is discovered within frame-
work code, then a possible configuration-related source of
imprecision is the framework configuration.” The possible
security finding is a vulnerable flow within framework code.
The possible security vulnerability is a sink using user input
(from a source) without proper downgrading. It is noted that
the security findings are “possible”, e.g., as particular security
findings and their corresponding vulnerabilities may not be
applicable to a particular program P 107. Similarly, security
vulnerabilities are considered possible, as sink may not be
susceptible to a particular vulnerability (e.g., if a sanitizer is
used in the flow from a source to the sink, but the sanitizer is
not known to the static analysis tool 150 and therefore the
flow is marked as vulnerable).

The output of block 215 is a mapping 217 of actual security
findings found within the program P 107 to potential configu-
ration-related sources of imprecision. In block 220, the com-
puting system 100 selects configuration-related sources of
imprecision for a user to configure. The selection may be
performed using a number of techniques, including those
illustrated by FIGS. 6-8 (described below). The output of
block 220 is, in an exemplary embodiment, a subset 221 of the
mapping 217.

In block 225, the computing system 100 requests the user
configure the selected configuration-related sources of impre-
cision. In the example presented herein, the Ul 180 of a
display 176 is used to implement the request in block 225.
However, this is merely exemplary and other techniques are
possible. Turning to FIG. 4, this figure illustrates a UI 180
(presented on a display 176) and indications 485 on the Ul
180 for requesting a user to configure selected configuration-
related sources of imprecision. The indications 485 corre-
spond to the mapping rules 185 in FIG. 3.

The indication 485-1 corresponds to mapping rule 185-1 in
FIG. 3 and has the following text in this example: “A vulner-
able flow has been discovered along a path having a call to
MethodX with a sanitizer-like signature; please consider con-
figuring the specification of the method (e.g., if the method is
a sanitizer).” In this case, the configuration-related source of

US 9,223,984 B2

7

imprecision is the MethodX that has a sanitizer-like signa-
ture. It is assumed the static analysis tool 150 has a configu-
ration menu (shown as “Configure” 410 in F1G. 4) that allows
the user to configure information associated with MethodX,
and in this case the specification of the method, where the
specification can indicate, e.g., whether the method is a sani-
tizer and if so for which security vulnerability.

The indication 485-2 corresponds to mapping rule 185-2 in
FIG. 3 and has the following text in this example: “A vulner-
ability of type ‘log forging’ has been discovered and the
source statement is a ‘getParameter’ call; please consider
configuring whether target web containers) can be con-
strained to certain web container(s).” In this case, the con-
figuration-related source of imprecision is the web container
(s). It is assumed the static analysis tool 150 has a
configuration menu (shown as “Configure” 410 in FIG. 4)
that allows the user to configure information associated with
the web container.

The indication 485-3 corresponds to mapping rule 185-3 in
FIG. 3 and has the following text in this example: “A vulner-
able flow has been discovered within framework code; please
consider configuring information related to the framework
configuration.” In this case, the configuration-related source
of imprecision is the framework configuration. It is assumed
the static analysis tool 150 has a configuration menu (shown
as “Configure” 410 in FIG. 4) that allows the user to configure
information associated with the framework configuration.

Returning to FIG. 2, in block 230, the user updates con-
figurations for the selected configuration-related sources of
imprecision. FIG. 5 illustrates exemplary actions 585 taken
by a user to configure selected configuration-related sources
of'imprecision in accordance with block 230. The actions 585
correspond to the indications 485 shown in FIG. 4. Action
585-1 corresponds to indication 485-1 and in action 585-1,
the user configures a specification of the method (e.g., Meth-
0odX in accordance with the example above) with the sani-
tizer-like signature to indicate the method is a sanitizer.
Action 585-2 corresponds to indication 485-2 and in action
585-2, the user constrains the web container(s) to specific
container(s). Action 585-3 corresponds to indication 485-3
and in action 585-3, the user configures the specification of
the framework validators installed by user to update frame-
work configuration.

Returning to FIG. 2, output of block 230 is a set 231 of
updated configurations. Although not shown in FIG. 2, it is
noted that the user may be provided with an option of not
performing configuration for some of the selected configura-
tion-related sources of imprecision.

In block 235, the computing system 100 updates the secu-
rity analysis results based on configured configuration-re-
lated sources or imprecision. For instance, the progressive
security analysis tool 170 can cause the static analysis tool
150 to rerun (block 260) a portion of the static analysis based
on the set 231 of updated configurations. Specifically, the
flows that are affected by the updated configurations would be
reexamined by the static analysis tool 150. Another exem-
plary option is to compute (e.g., during static analysis in block
205) metadata for reported vulnerabilities, which allows rea-
soning about the vulnerabilities without having to run the
analysis (or a portion thereof) again. The metadata is exam-
ined in block 235 to determine whether or not security finding
(s) from the security analysis results are no longer considered
to be vulnerable based on the updated configuration. Block
235 produces as output the final security analysis results, F,
158. Consider the following non-limiting examples:

1) For example (A), since the user (in action 585-1) has
configured specification of MethodX (with the sanitizer-like

25

40

45

55

8

signature) to indicate the method is a sanitizer, the static
analysis tool 150 can take the configured specification into
consideration and apply the configured specification to the
flow previously marked as vulnerable and having a path that
passed through MethodX. Because the configured specifica-
tion indicates MethodX is a sanitizer, the static analysis tool
150 would remove an indication (as a security finding 181) of
avulnerability from the security analysis results 157 in order
to “create” (or update) the final security analysis results 158.

2) For example (B), since the user (in action 585-2) has
performed configuration to constrain the web container(s) to
specific container(s), the static analysis tool 150 can take the
constraint on the web container(s) into consideration and
apply the constrained web container(s) to the vulnerability of
type “log forging™ that was discovered and based on the
source statement being a “getParameter” call. Should the
constrained web container(s) not be susceptible to a vulner-
ability of type “log forging” based on a source statement of a
“getParameter” call, the static analysis tool 150 would
remove an indication (as a security finding 181) of a vulner-
ability from the security analysis results 157 in order to “cre-
ate” (or update) the final security analysis results 158.

3) For example (C), since the user (in action 585-3) has
performed configuration to configure the specification of
framework validators installed by the user to update the
framework configuration, the static analysis tool 150 can take
the specification of framework validators into consideration
and apply the specification of framework validators to the
corresponding flows previously indicated as being vulnerable
in initial security analysis results 157. Should the flows no
longer be susceptible to a vulnerability (e.g., since the flows
pass through the framework validators), the static analysis
tool 150 would remove indication(s) (as security finding(s)
181) of a vulnerability or vulnerabilities from the security
analysis results 157 in order to “create” (or update) the final
security analysis results 158.

Thus, in block 250, the computing system 100 determines
whether security finding(s) 181 from the security analysis
results 157 are no longer considered to be vulnerable based on
the updated configuration. Although it is possible for the user
to update configuration associated with configuration-related
sources of imprecision and the determination in block 250
would determine that all of the previously considered vulner-
abilities in the security findings 181 are still considered to be
vulnerable based on the updated configuration, it is likely that
one or more (typically many) security finding(s) 181 from the
security analysis results 157 would be determined to no
longer be vulnerable (block 255) and would be removed
(block 255) from the initial security analysis results 157 to
create final security analysis results 158, which should con-
tain fewer security findings 181.

In block 240, the computing system 100 (e.g., under direc-
tion of the static analysis tool 150 or the configuration tool
170) outputs the final security analysis results. For instance,
this output could go to memory/memories 145 or could be
displayed in whole or part to the user (block 245) using
indications of the security findings 181 remaining in the final
security analysis results 158.

In a typical static security analysis of a large web program,
for instance, there may be hundreds or thousands of indicated
security findings 181. Therefore, the number of entries in the
mapping 217 of actual security findings to potential configu-
ration-related sources of imprecision could be quite high.
Thus, it would be beneficial in many situations to reduce (via
selection in block 220 of FIG. 2) the number of configuration-
related sources of imprecision the user is asked to configure.

US 9,223,984 B2

9

There are a number of different techniques to select the
configuration-related sources of imprecision for a user to
configure (see block 220 of FIG. 2). FIGS. 6, 7, and 8 are each
examples of operations to select configuration-related
sources of imprecision for a user to configure. In block 610 of
FIG. 6, the computing system 100 (e.g., under control of the
configuration tool 170) converges on a subset (less than all) of
the configuration-related sources of imprecision that opti-
mizes the following two constraints:

1) Minimum number of configuration-related sources of
imprecision; and

2) Maximal precision.

The more precise an analysis is, the fewer false positives
there are. These two constraints are in conflict, and so this is
an optimization problem, where the solution is to configure
the least amount of items yielding the highest accuracy
improvement. The exact weights ofthese two constraints may
be decided in an actual implementation and such weights
would be taken into account during the optimization problem.
An optimization problem with multiple constraints is per-
formed in Livshits, et al., “Merlin: Specification Inference for
Explicit information Flow Problems”, PLDI *09 Proceedings
of the 2009 ACM SIGPLAN conference on Programming
language design and implementation (2009).

In block 710 of FIG. 7, the computing system 100 (e.g.,
under control of the configuration tool 170) requests the user
to specify (e.g., the z top) configuration-related sources of
imprecision. In block 810 of FIG. 8, the computing system
100 (e.g., under control of the configuration tool 170)
requests the user specify a number of configuration-related
sources of imprecision that cover at least a certain percentage
(e.g., x %) of the total number of configuration-related
sources of imprecision.

The techniques in FIGS. 6-8 are merely exemplary and
other techniques may be used.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction

10

15

20

25

30

35

40

45

50

55

60

65

10

execution system, apparatus, or device. A computer readable
storage medium does not include a propagating wave.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

US 9,223,984 B2

11

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. An apparatus, comprising:

one or more memories comprising computer-readable

code;
one or more hardware processors,
wherein the one or more hardware processors are config-
ured, in response to execution of the computer-readable
code, to cause the apparatus to perform the following:

mapping, based on a first mapping from possible security
findings for possible security vulnerabilities in a static
analysis of a program to possible configuration-related
sources of imprecision, actual security findings in secu-
rity analysis results from the static analysis of the pro-
gram to corresponding configuration-related sources of
imprecision, the mapping of the actual security findings
creating a second mapping;

selecting configuration-related sources of imprecision,

wherein selecting further comprises converging on a
subset of the configuration-related sources of impreci-
sion that optimizes the following two constraints: mini-
mum number of configuration-related sources of impre-
cision; and maximal precision, and wherein selecting
further comprises setting the subset of the configuration-
related sources of imprecision as the selected configu-
ration-related sources of imprecision;

requesting a user configure the selected ones of the con-

figuration-related sources of imprecision from the sec-
ond mapping;

responsive to a user updating configuration corresponding

to the selected ones of the configuration-related sources
of imprecision, updating security analysis results for the
static analysis of the program at least by determining
whether one or more security findings from the security
analysis results are no longer considered to be vulner-
able based on the updated configuration by the user and
by removing from the security analysis results any of the
one or more security findings that are no longer consid-
ered to be vulnerable based on the updated configuration
by the user; and

outputting the updated security analysis results.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

2. The apparatus of claim 1, wherein requesting further
comprises outputting indications requesting the user config-
ure the selected configuration-related sources of imprecision.
3. The apparatus of claim 1, wherein:
the one or more hardware processors are further config-
ured, in response to execution of the computer-readable
code, to cause the apparatus to perform the following:
prior to mapping actual security findings from a static
analysis of the program to corresponding configuration-
related sources of imprecision, performing a first static
analysis to determine the actual security findings; and

determining whether one or more security findings from
the security analysis results are no longer considered to
be vulnerable based on the updated configuration by the
user further comprises performing a second static analy-
sis on the program specifically on flows affected by the
configuration updated by the user.
4. The apparatus of claim 1, wherein:
the one or more hardware processors are further config-
ured, in response to execution of the computer-readable
code, to cause the apparatus to perform the following:
prior to mapping actual security findings from a static
analysis of the program to corresponding configuration-
related sources of imprecision, performing a first static
analysis to determine the actual security findings and to
compute metadata for reported vulnerabilities; and

determining whether one or more security findings from
the security analysis results are no longer considered to
be vulnerable based on the updated configuration by the
user further comprises examining the computed meta-
data to determine whether one or more security findings
from the security analysis results are no longer consid-
ered to be vulnerable.

5. The apparatus of claim 1, wherein outputting further
comprises outputting the updated security analysis results to
a display.

6. A computer program product comprising a non-transi-
tory computer readable storage medium having program code
embodied therewith, the program code executable by a com-
puting system causing the computing system to perform:

mapping, based on a first mapping from possible security

findings for possible security vulnerabilities in a static
analysis of a program to possible configuration-related
sources of imprecision, actual security findings in secu-
rity analysis results from the static analysis of the pro-
gram to corresponding configuration-related sources of
imprecision, the mapping of the actual security findings
creating a second mapping;

selecting configuration-related sources of imprecision,

wherein selecting further comprises converging on a
subset of the configuration-related sources of impreci-
sion that optimizes the following two constraints: mini-
mum number of configuration-related sources of impre-
cision; and maximal precision, and wherein selecting
further comprises setting the subset of the configuration-
related sources of imprecision as the selected configu-
ration-related sources of imprecision;

requesting a user configure the selected ones of the con-

figuration-related sources of imprecision from the sec-
ond mapping;

responsive to a user updating configuration corresponding

to the selected ones of the configuration-related sources
of imprecision, updating security analysis results for the
static analysis of the program at least by determining
whether one or more security findings from the security
analysis results are no longer considered to be vulner-
able based on the updated configuration by the user and

US 9,223,984 B2

13

by removing from the security analysis results any of the
one or more security findings that are no longer consid-
ered to be vulnerable based on the updated configuration
by the user; and
outputting the updated security analysis results.
7. The computer program product of claim 6, wherein
requesting further comprises outputting indications request-
ing the user configure the selected configuration-related
sources of imprecision.
8. The computer program product of claim 6, wherein:
the program code executable by a computing system fur-
ther causing the computing system to perform: prior to
mapping actual security findings from a static analysis
of the program to corresponding configuration-related
sources of imprecision, performing a first static analysis
to determine the actual security findings; and

determining whether one or more security findings from
the security analysis results are no longer considered to
be vulnerable based on the updated configuration by the
user further comprises performing a second static analy-
sis on the program specifically on flows affected by the
configuration updated by the user.

9. The computer program product of claim 6, wherein:

the program code executable by a computing system fur-

ther causing the computing system to perform: prior to
mapping actual security findings from a static analysis
of the program to corresponding configuration-related
sources of imprecision, performing a first static analysis
to determine the actual security findings and to compute
metadata for reported vulnerabilities; and

determining whether one or more security findings from

the security analysis results are no longer considered to
be vulnerable based on the updated configuration by the
user further comprises examining the computed meta-
data to determine whether one or more security findings
from the security analysis results are no longer consid-
ered to be vulnerable.

10. The computer program product of claim 6, wherein
outputting further comprises outputting the updated security
analysis results to a display.

11. The apparatus of claim 1, wherein the first mapping
comprises a plurality of mapping rules that map possible
security findings for the static analysis of the program to
possible configuration-related sources of imprecision.

12. A method, comprising:

mapping, based on a first mapping from possible security

findings for possible security vulnerabilities in a static
analysis of a program to possible configuration-related
sources of imprecision, actual security findings in secu-
rity analysis results from the static analysis of the pro-
gram to corresponding configuration-related sources of
imprecision, the mapping of the actual security findings
creating a second mapping;

selecting configuration-related sources of imprecision,

wherein selecting further comprises converging on a
subset of the configuration-related sources of impreci-

10

15

20

25

30

35

40

45

50

55

14

sion that optimizes the following two constraints: mini-
mum number of configuration-related sources of impre-
cision; and maximal precision, and wherein selecting
further comprises setting the subset of the configuration-
related sources of imprecision as the selected configu-
ration-related sources of imprecision;
requesting a user configure the selected configuration-re-
lated sources of imprecision from the second mapping;

responsive to the user updating configuration correspond-
ing to the selected configuration-related sources of
imprecision, updating the security analysis results for
the static analysis of the program at least by determining
whether one or more security findings from the security
analysis results are no longer considered to be vulner-
able based on the updated configuration by the user and
by removing from the security analysis results any ofthe
one or more security findings that are no longer consid-
ered to be vulnerable based on the updated configuration
by the user; and

outputting the updated security analysis results.

13. The method of claim 12, wherein outputting further
comprises outputting the updated security analysis results to
a display.

14. The method of claim 12, further comprising, prior to
requesting, selecting the selected configuration-related
sources of imprecision.

15. The method of claim 12, wherein requesting further
comprises outputting indications requesting the user config-
ure the selected configuration-related sources of imprecision.

16. The method of claim 12, wherein:

the method further comprises, prior to mapping actual

security findings from a static analysis of the program to
corresponding configuration-related sources of impreci-
sion, performing a first static analysis to determine the
actual security findings; and

determining whether one or more security findings from

the security analysis results are no longer considered to
be vulnerable based on the updated configuration by the
user further comprises performing a second static analy-
sis on the program specifically on flows affected by the
configuration updated by the user.

17. The method of claim 12, wherein:

the method further comprises, prior to mapping actual

security findings from a static analysis of the program to
corresponding configuration-related sources of impreci-
sion, performing a first static analysis to determine the
actual security findings and to compute metadata for
reported vulnerabilities; and

determining whether one or more security findings from

the security analysis results are no longer considered to
be vulnerable based on the updated configuration by the
user further comprises examining the computed meta-
data to determine whether one or more security findings
from the security analysis results are no longer consid-
ered to be vulnerable.

#* #* #* #* #*

